- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Castro, Joshua (2)
-
Liscidini, Marco (2)
-
Moody, Galan (2)
-
Thiel, Lillian (2)
-
Ahn, Seungbae (1)
-
Atrli, Amirali (1)
-
Borghi, Massimo (1)
-
Bowers, John (1)
-
Bowers, John E (1)
-
Castro, Joshua E (1)
-
Chen, Wenjun (1)
-
Duan, Liao (1)
-
Fontaine, Samuel_E (1)
-
Lewis, Nicholas (1)
-
Li, Xiaochen (1)
-
Pang, Yiming (1)
-
Sipe, J_E (1)
-
Steiner, Trevor J (1)
-
Steiner, Trevor_J (1)
-
Tagliavacche, Noemi (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Integrated photonic microresonators have become an essential resource for generating photonic qubits for quantum information processing, entanglement distribution and networking, and quantum communications. The pair-generation rate is enhanced by reducing the microresonator radius, but this comes at the cost of increasing the frequency-mode spacing and reducing the quantum information spectral density. Here, we circumvent this rate-density trade-off in an -on-insulator photonic device by multiplexing an array of 20 small-radius microresonators, each producing a 650-GHz-spaced comb of time-energy entangled-photon pairs. The resonators can be independently tuned via integrated thermo-optic heaters, enabling control of the mode spacing from degeneracy up to a full free spectral range. We demonstrate simultaneous pumping of five resonators with up to -GHz relative comb offsets, where each resonator produces pairs exhibiting time-energy entanglement visibilities up to , coincidence-to-accidental ratios exceeding , and an on-chip pair rate up to per comb line—an improvement over prior work by more than a factor of 40. As a demonstration, we generate frequency-bin qubits in a maximally entangled two-qubit Bell state with fidelity exceeding ( with background correction) and detected frequency-bin entanglement rates up to 7 kHz (an approximately MHz on-chip pair rate) using a pump power of approximately . Multiplexing small-radius microresonators combines the key capabilities required for programmable and dense photonic qubit encoding while retaining high pair-generation rates, heralded single-photon purity, and entanglement fidelity. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available March 1, 2026
-
Fontaine, Samuel_E; Vendromin, Colin; Steiner, Trevor_J; Atrli, Amirali; Thiel, Lillian; Castro, Joshua; Moody, Galan; Bowers, John; Liscidini, Marco; Sipe, J_E (, Physical Review A)
-
Chen, Wenjun; Castro, Joshua; Ahn, Seungbae; Li, Xiaochen; Vazquez‐Mena, Oscar (, Advanced Materials)Abstract Charge collection is critical in any photodetector or photovoltaic device. Novel materials such as quantum dots (QDs) have extraordinary light absorption properties, but their poor mobility and short diffusion length limit efficient charge collection using conventional top/bottom contacts. In this work, a novel architecture based on multiple intercalated chemical vapor deposition graphene monolayers distributed in an orderly manner inside a QD film is studied. The intercalated graphene layers ensure that at any point in the absorbing material, photocarriers will be efficiently collected and transported. The devices with intercalated graphene layers have superior quantum efficiency over single‐bottom graphene/QD devices, overcoming the known restriction that the diffusion length imposes on film thickness. QD film with increased thickness shows efficient charge collection over the entire λ ≈ 500–1000 nm spectrum. This architecture could be applied to boost the performance of other low‐cost materials with poor mobility, allowing efficient collection for films thicker than their diffusion length.more » « less
An official website of the United States government
